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• We deal with the managing of inconsistencies inside the Statistical
Matching (integration of sources) framework;

• when logical relations among the variables are present incoherence
can arise in the probability evaluations

• different methods can be used to remove such incoherences:

• maximize the “partial likelihood function” on the base of observed
data;

• least committal imprecise probability extensions;
• specific precise “distances” minimization.



Statistical Matching: integration of sources in
a coherent setting

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB ) two
random samples (with a finite range) related to two sources A and B
concerning the same population of interest, and drawn according to the
same sampling scheme.
We can elicit from the two files the relevant probability values

Yj|i = PY |(X=xi )(Y = yj)Zk|i = PZ |(X=xi )(Z = zk)X i = PX (X = xi )

that even separately coherent, whenever there are some logical
constraints among the variables Y and Z , could induce an incoherent
whole assessment

(E ,p) with
E =

{
(X = xi ), (Y = yj)|(X = xi ), (Z = zk)|(X = xi )

for any xi , yj , zk

}
,

p = {X i , Yj|i ,Zk|i}i,j,k .

Anyhow, incoherence can localize only in association to elements of E
with the same conditioning event (X = xi ).



Coherent Extension

To adjust the initially incoherent assessment (E ,p) it is possible to
determine a coherent sub-assessment (G,p|G) with maximal cardinality
and coherently extend it to the rest F = E \ G by the generalized
Bayesian updating scheme obtaining an imprecise sub-assessment

(F , [pF ,pF ]).

Note that inference on decision targets can be performed again through
the generalized Bayesian updating scheme but applied to imprecise
evaluations.

Whenever too vague, inference bounds can be eventually reduced to
coherent cores, i.e. total coherent subintervals with highest degree of
support.



Minimization of (pseudo)distances among
probability distributions

An other way to correct incoherence is to minimize one of most widely
adopted divergencies among conditional assessments p = [p1, . . . , pn] and
q = [q1, . . . , qn] on the same set of conditional events E :

L1(p,q) =
n∑

i=1

|qi−pi |; L2(p,q) =
n∑

i=1

(qi−pi )2; KL(p,q) =
n∑

i=1

(qi ln(qi/pi )−qi+pi )

... but for partial conditional probability assessments p ∈ (0, 1)n on E
recently we tailored the following “discrepancy”

∆(p,α) =
∑

i|α(Hi )>0

α(Hi )

(
qi ln

qi
pi

+ (1− qi ) ln
(1− qi )

(1− pi )

)
,

with qα induced by a probability mass function α, but for Statistical
Matching ...



A mixture of discrepancies

... it is better to minimize the following discrepancy reformulation:

∆mix(p, {αi}i ) =
∑
i

X i

∑
j

(
qαi

j|i ln
qαi

j|i

Yj|i
+ (1− qαi

j|i ) ln
(1− qαi

j|i )

(1− Yj|i )

)
+

+
∑
k

(
qαi

k|i ln
qαi

k|i

Zk|i
+ (1− qαi

k|i ) ln
(1− qαi

k|i )

(1− Zk|i )

)]

where each distribution αi works just on the sample space spanned by
the conditional events {(Y = yj)|(X = xi ), (Z = zk)|(X = xi )}, it is
constrained to fulfill the normalizing condition αi (X = xi ) = X i , and
generates the conditional probabilities

qαi

j|i =
αi (Y = yj)

αi (X = xi )
qαi

k|i =
αi (Z = zk)

αi (X = xi )
.



A practical example
We applied the three methodologies (likelihood maximization, coherent
extension and distances minimizations) to real data representing a subset
of employees with three categorical variables (Age, Educational Level and
Professional Status) discretized into:
A1=15-17 y.o., A2=18-22 y.o., A3=23-64 y.o., A4 = (≥ 65) y.o;
E1=None or comp. sch., E2=Voc. sch., E3=Second. sch., E4=Degree;
S1=Manager, S2=Clerk, S3=Worker.

We observed the following conditional assessment (−− denotes impossible

configuration):

A1 A2 A3 A4

P(·) 0.0065 0.0238 0.9594 0.0104
P(S1|·) −− −− 0.1616 0.6667
P(S2|·) −− 0.2273 0.3913 0.1111
P(S3|·) 1 0.7727 0.4293 0.2222
P(E1|·) 1 0.4242 0.3419 0.6667
P(E2|·) 0 0.1818 0.0918 0
P(E3|·) −− 0.3940 0.4176 0.2
P(E4|·) −− −− 0.1422 0.1333

.

P(·|A4) is not coherent since from logical constraints it follows E1 ∧ S1 = ∅ and

E1 ⊆ S3 while we have P(E1|A4) + P(S1|A4) + P(S3|A4) > 1 and

P(E1|A4) > P(S1|A4).



Several incoherence correction with
associated inference results for the target

S3|E4

S1|A4 S2|A4 S3|A4 E1|A4 E2|A4 E3|A4 E4|A4 S3|E4

p 0.6667 0.1111 0.2222 0.6667 0 0.2000 0.1333 ∅
L1|F 0.2222 - 0.6667 0.6667 - - - [0,0.6285]

L1|A4 0.5266 0 0.4734 0.4734 0 0.2836 0.2431 [0,0.6234]

L2|A4 0.5333 0.0389 0.4278 0.4278 0.0389 0.3 0.2333 [0,0.6238]

KL|A4 0.4856 0.1179 0.3965 0.3965 0.1179 0.2914 0.1942 [0,0.6257]

∆mix 0.4985 0.0939 0.4077 0.4077 0.0939 0.2943 0.2042 [0,0.6252]
ML 0.4286 0.0714 0.5000 0.5000 0 0.3000 0.2000 [0,0.6254]

IPE\F [0 , 0.2222] - [0.6667 0.8889] - - - - [0,0.6386]

core [0.0017,0.6286]

IPE\{·|A4}
[0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0,0.6607]

core [0,0.6349]

where F = {E1|A4,S1|A4,S3|A4} is the minimal cardinality subset of E
associated to incoherent values, and...



Conclusion

• L1|F (L1 minimization for sub-ass. on F) and IPE\F (coherent imprecise

extension induced by sub-ass. on E \ F) perform quite well: even
though a drastic change on the probability values, they induce quite
reasonable inference bounds;

• L1|A4 (L1 minimization for sub-ass. P(·|A4)) and ML (maximum

likelihood estimation) give similar results and in particular they leave
to 0 the probability of E2|A4 since the absence of observations in the
original data;

• others adjustments induced by (pseudo)distances minimizations for
sub-ass. P(·|A4) have all quite similar behaviors;

• ∆mix has the advantage of automatically localize of the scenarios
where the adjustment can be performed;

• the wider imprecise correction IPE\{·|A4} (coherent imprecise extension

induced by sub-ass. on E \ {·|A4}), surely performs worst.


